A variant of the Hardy-Ramanujan theorem
نویسندگان
چکیده
For each natural number $n$, we define $\omega^*(n)$ to be the of primes $p$ such that $p-1$ divides $n$. We show in contrast Hardy-Ramanujan theorem which asserts $\omega(n)$ prime divisors $n$ has a normal order $\log\log n$, function does not have order. conjecture for some positive constant $C$, $$\sum_{n\leq x} \omega^*(n)^2 \sim Cx(\log x). $$ Another related this emerges, seems independent interest. More precisely, $C>0$, as $x\to \infty$, $$\sum_{[p-1,q-1]\leq {1 \over [p-1, q-1]} C \log x, where summation is over $p,q\leq x$ least common multiple $[p-1,q-1]$ less than or equal $x$.
منابع مشابه
a comparative study of the theme of "marriage" in three victorian novelists: charles dickens, george eliot and thomas hardy
این تحقیق کوشیده است با انتخاب پنج رمان از میان آثار برگزیده، «چارلز دیکنز»، «جورج الیوت» و «توماس هاردی » و با رویکردی تطبیقی به بررسی درونمایه ی «ازدواج» در آثار این سه رمان نویس بزرگ دوره ی ویکتوریا بپردازد. فرضیه ی اولیه ی تحقیق این بوده است که چارلز دیکنز (1870- 1812) با زبانی شوخ و گزنده، جورج الیوت(1880- 1819) با نگاهی آموزشی–اندرزگونه و توماس هاردی(1928- 1840) با رویکردی تلخ وانتقادی به...
Efficient implementation of the Hardy{--}Ramanujan{--}Rademacher formula
We describe how the Hardy–Ramanujan–Rademacher formula can be implemented to allow the partition function p(n) to be computed with softly optimal complexity O(n) and very little overhead. A new implementation based on these techniques achieves speedups in excess of a factor 500 over previously published software and has been used by the author to calculate p(10), an exponent twice as large as i...
متن کاملA Derivation of the Hardy-ramanujan Formula from an Arithmetic Formula
We re-prove the Hardy-Ramanujan asymptotic formula for the partition function without using the circle method. We derive our result from recent work of Bruinier and Ono on harmonic weak Maass forms.
متن کاملA Variant of the Hales-jewett Theorem
It was shown by V. Bergelson that any set B ⊆ N with positive upper multiplicative density contains nicely intertwined arithmetic and geometric progressions: For each k ∈ N there exist a, b, d ∈ N such that ̆ b(a + id) : i, j ∈ {1, 2, . . . , k} ̄ ⊆ B. In particular one cell of each finite partition of N contains such configurations. We prove a Hales-Jewett type extension of this partition theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hardy-Ramanujan Journal
سال: 2022
ISSN: ['2804-7370']
DOI: https://doi.org/10.46298/hrj.2022.8343